Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms
نویسندگان
چکیده
We describe in this paper the use of neural networks, fuzzy logic and genetic algorithms for voice recognition. In particular, we consider the case of speaker recognition by analyzing the sound signals with the help of intelligent techniques, such as the neural networks and fuzzy systems. We use the neural networks for analyzing the sound signal of an unknown speaker, and after this first step, a set of type-2 fuzzy rules is used for decision making. We need to use fuzzy logic due to the uncertainty of the decision process. We also use genetic algorithms to optimize the architecture of the neural networks. We illustrate our approach with a sample of sound signals from real speakers in our institution.
منابع مشابه
Genetic optimization of modular neural networks with fuzzy response integration for human recognition
In this paper we propose a new approach to genetic optimization of modular neural networks with fuzzy response integration. The architecture of the modular neural network and the structure of the fuzzy system (for response integration) are designed using genetic algorithms. The proposed methodology is applied to the case of human recognition based on three biometric measures, namely iris, ear, ...
متن کاملHierarchical Genetic Algorithms for Type-2 Fuzzy System Optimization Applied to Pattern Recognition and Fuzzy Control
In this chapter a new method of hierarchical genetic algorithm for fuzzy inference systems optimization is proposed. This method was used in two applications, the first was to perform the combination of responses of modular neural networks for human recognition based on face, iris, ear and voice, and the second one for fuzzy control of temperature in the shower benchmark problem. The results ob...
متن کاملType-2 Fuzzy Logic as a Method of Response Integration in Modular Neural Networks
We describe in this paper the use of neural networks and type-2 fuzzy logic for pattern recognition. In particular, we consider the case of speaker recognition by analyzing the sound signals with the help of intelligent techniques, such as the neural networks and fuzzy systems. We use the neural networks for analyzing the sound signal of an unknown speaker, and after this first step, a set of t...
متن کاملCoverage Improvement In Wireless Sensor Networks Based On Fuzzy-Logic And Genetic Algorithm
Wireless sensor networks have been widely considered as one of the most important 21th century technologies and are used in so many applications such as environmental monitoring, security and surveillance. Wireless sensor networks are used when it is not possible or convenient to supply signaling or power supply wires to a wireless sensor node. The wireless sensor node must be battery powered.C...
متن کاملGenetic Design of Fuzzy Neural Networks Based on Respective Input Spaces Using Interval Type-2 Fuzzy Set
In this paper, we propose the genetic design of fuzzy neural networks with multi-output based on interval type-2 fuzzy set (IT2FSFNNm) for pattern recognition. IT2FSFNNm is the networks of combination between the fuzzy neural networks (FNNs) and interval type-2 fuzzy set with uncertainty. The premise part of the networks is composed of the fuzzy partition of respective input spaces and the cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Engineering Letters
دوره 13 شماره
صفحات -
تاریخ انتشار 2006